|
应用统计学 请在以下五组题目中任选一组作答,满分100分。 第一组: 一、 计算题(每小题25分,共50分) 1、下表中的数据是主修信息系统专业并获得企业管理学士学位的学生,毕业后的月薪(用y表示)和他在校学习时的总评分(用x表示)的回归方程。 2、设总体X的概率密度函数为 file:///C:/Users/ADMINI~1/AppData/Local/Temp/msohtmlclip1/01/clip_image002.gif 其中file:///C:/Users/ADMINI~1/AppData/Local/Temp/msohtmlclip1/01/clip_image004.gif为未知参数,file:///C:/Users/ADMINI~1/AppData/Local/Temp/msohtmlclip1/01/clip_image006.gif是来自X的样本。 (1)试求file:///C:/Users/ADMINI~1/AppData/Local/Temp/msohtmlclip1/01/clip_image008.gif的极大似然估计量file:///C:/Users/ADMINI~1/AppData/Local/Temp/msohtmlclip1/01/clip_image010.gif; (2)试验证file:///C:/Users/ADMINI~1/AppData/Local/Temp/msohtmlclip1/01/clip_image010.gif 是file:///C:/Users/ADMINI~1/AppData/Local/Temp/msohtmlclip1/01/clip_image013.gif的无偏估计量。 二、简答题(每小题25分,共50分) 1. 在统计假设检验中,如果轻易拒绝了原假设会造成严重后果时,应取显著性水平较大还是较小,为什么? 2. 加权算术平均数受哪几个因素的影响?若报告期与基期相比各组平均数没变,则总平均数的变动情况可能会怎样?请说明原因。 第二组: 一、 计算题(每小题25分,共50分) 1、某一汽车装配操作线完成时间的计划均值为2.2分钟。由于完成时间既受上一道装配操作线的影响,又影响到下一道装配操作线的生产,所以保持2.2分钟的标准是很重要的。一个随机样本由45项组成,其完成时间的样本均值为2.39分钟,样本标准差为0.20分钟。在0.05的显著性水平下检验操作线是否达到了2.2分钟的标准。file:///C:/Users/ADMINI~1/AppData/Local/Temp/msohtmlclip1/01/clip_image015.gif 2、某商店为解决居民对某种商品的需要,调查了100户住户,得出每月每户平均需要量为10千克,样本方差为9。若这个商店供应10000户,求最少需要准备多少这种商品,才能以95%的概率满足需要? 二、简答题(每小题25分,共50分) 1. 解释相关关系的含义,说明相关关系的特点。 2. 为什么对总体均值进行估计时,样本容量越大,估计越精确? 第三组: 一、 计算题(每小题25分,共50分) 1、根据下表中Y与X两个变量的样本数据,建立Y与X的一元线性回归方程。 | Y file:///C:/Users/ADMINI~1/AppData/Local/Temp/msohtmlclip1/01/clip_image017.gif X | | | | | file:///C:/Users/ADMINI~1/AppData/Local/Temp/msohtmlclip1/01/clip_image019.gif | | | | | | | | | | | | | | | | | | |
2、某茶叶制造商声称其生产的一种包装茶叶平均每包重量不低于150克,已知茶叶包装重量服从正态分布,现从一批包装茶叶中随机抽取100包,检验结果如下: | 每包重量(克) | 包数(包)f | x | xf | x-file:///C:/Users/ADMINI~1/AppData/Local/Temp/msohtmlclip1/01/clip_image021.gif | (x-file:///C:/Users/ADMINI~1/AppData/Local/Temp/msohtmlclip1/01/clip_image023.gif)2f | | 148—149 | 10 | 148.5 | 1485 | -1.8 | 32.4 | | 149—150 | 20 | 149.5 | 2990 | -0.8 | 12.8 | | 150—151 | 50 | 150.5 | 7525 | 0.2 | 2.0 | | 151—152 | 20 | 151.5 | 3030 | 1.2 | 28.8 | | 合计 | 100 | -- | 15030 | -- | 76.0 |
要求:(1)计算该样本每包重量的均值和标准差; (2)以99%的概率估计该批茶叶平均每包重量的置信区间(t0.005(99)≈2.626); (3)在ɑ=0.01的显著性水平上检验该制造商的说法是否可信(t0.01(99)≈2.364)(4)以95%的概率对这批包装茶叶达到包重150克的比例作出区间估计(Z0.025=1.96); (写出公式、计算过程,标准差及置信上、下保留3位小数) 二、简答题(每小题25分,共50分) 1. 区间估计与点估计的结果有何不同? 2. 统计调查的方法有那几种? 第四组: 一、 计算题(每小题25分,共50分) 1、假定某化工原料在处理前和处理后取样得到的含脂率如下表: 假定处理前后含脂率都服从正态分布,问处理后与处理前含脂率均值有无显著差异。 2、一种新型减肥方法自称其参加者在第一个星期平均能减去至少8磅体重.由40名使用了该种方法的个人组成一个随机样本,其减去的体重的样本均值为7磅,样本标准差为3.2磅.你对该减肥方法的结论是什么?(α=0.05,μα/2=1.96, μα=1.647) 二、简答题(每小题25分,共50分) 1. 解释抽样推断的含义。 2. 时期数列与时点数列有哪些不同的特点? 第五组: 一、 计算题(每小题25分,共50分) 1、某商业企业商品销售额1月、2月、3月分别为216,156,180.4万元,月初职工人数1月、2月、3月、4月分别为80,80,76,88人,试计算该企业1月、2月、3月各月平均每人商品销售额和第一季度平均每月人均销售额。(写出计算过程,结果精确到0.0001万元\人) 2、下表中的数据是主修信息系统专业并获得企业管理学士学位的学生,毕业后的月薪(用y表示)和他在校学习时的总评分(用x表示)的回归方程。 二、简答题(每小题25分,共50分) 1. 为什么要计算离散系数? 2. 简述算术平均数、几何平均数、调和平均数的适用范围。 要求: 1. 独立完成,作答时要写明题型、题号; 2. 作答方式:手写作答或电脑录入,使用A4格式白纸; 3. 提交方式:以下两种方式任选其一, 1) 手写作答的同学可以将作业以图片形式打包压缩上传; 2) 提交电子文档的同学可以将作业以word文档格式上传; 4. 上传文件命名为“中心-学号-姓名-科目.rar” 或“中心-学号-姓名-科目.doc”;5. 文件容量大小:不得超过20MB。
|